Semantics-Aware Dynamic Localization and Refinement for Referring Image Segmentation
نویسندگان
چکیده
Referring image segmentation segments an from a language expression. With the aim of producing high-quality masks, existing methods often adopt iterative learning approaches that rely on RNNs or stacked attention layers to refine vision-language features. Despite their complexity, RNN-based are subject specific encoder choices, while attention-based offer limited gains. In this work, we introduce simple yet effective alternative for progressively discriminative multi-modal The core idea our approach is leverage continuously updated query as representation target object and at each iteration, strengthen features strongly correlated weakening less related ones. As initialized by successively features, algorithm gradually shifts being localization-centric segmentation-centric. This strategy enables incremental recovery missing parts and/or removal extraneous through iteration. Compared its counterparts, method more versatile—it can be plugged into prior arts straightforwardly consistently bring improvements. Experimental results challenging datasets RefCOCO, RefCOCO+, G-Ref demonstrate advantage with respect state-of-the-art methods.
منابع مشابه
diagnostic and developmental potentials of dynamic assessment for writing skill
این پایان نامه بدنبال بررسی کاربرد ارزیابی مستمر در یک محیط یادگیری زبان دوم از طریق طرح چهار سوال تحقیق زیر بود: (1) درک توانایی های فراگیران زمانیکه که از طریق برآورد عملکرد مستقل آنها امکان پذیر نباشد اما در طول جلسات ارزیابی مستمر مشخص شوند; (2) امکان تقویت توانایی های فراگیران از طریق ارزیابی مستمر; (3) سودمندی ارزیابی مستمر در هدایت آموزش فردی به سمتی که به منطقه ی تقریبی رشد افراد حساس ا...
15 صفحه اولImage Segmentation with Multidimensional Refinement Indicators
We transpose an optimal control technique to the image segmentation problem. The idea is to consider image segmentation as a parameter estimation problem. The parameter to estimate is the color of the pixels of the image. We use the adaptive parameterization technique which builds iteratively an optimal representation of the parameter into uniform regions that form a partition of the domain, he...
متن کاملMorphological Refinement of an Image Segmentation
This paper describes a method to improve a given segmentation result in order to produce a new, refined and more accurate segmented image. The method consists of three phases: shrinking of the input partitions, filtering of the input imagery leading to a mask image, and expansion of the shrunk partitions within the filtered image. The concept is illustrated for the enhancement of a land cover d...
متن کاملSemi-supervised statistical region refinement for color image segmentation
Some authors have recently devised adaptations of spectral grouping algorithms to integrate prior knowledge, as constrained eigenvalues problems. In this paper, we improve and adapt a recent statistical region merging approach to this task, as a nonparametric mixture model estimation problem. The approach appears to be attractive both for its theoretical benefits and its experimental results, a...
متن کاملA Semantics for Temporally-dependent Referring Expressions
In this paper, we sketch a new approach to the problem of the temporal interpretation of nominal predicates. The approach differs from previous analyses (e.g., Enç (1986), Musan (1999), Tonhauser (2002)) in that it is grounded in a different ontology, namely one that regards individuals as spatiotemporal entities (a.k.a. ‘spatio-temporal worms’) (Heller (1990), Sider (1997), inter alia): roughl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence
سال: 2023
ISSN: ['2159-5399', '2374-3468']
DOI: https://doi.org/10.1609/aaai.v37i3.25428